Phyllotaxis: from patterns of organogenesis at the meristem to shoot architecture.
نویسندگان
چکیده
The primary architecture of the aerial part of plants is controlled by the shoot apical meristem, a specialized tissue containing a stem cell niche. The iterative generation of new aerial organs, (leaves, lateral inflorescences, and flowers) at the meristem follows regular patterns, called phyllotaxis. Phyllotaxis has long been proposed to self-organize from the combined action of growth and of inhibitory fields blocking organogenesis in the vicinity of existing organs in the meristem. In this review, we will highlight how a combination of mathematical/computational modeling and experimental biology has demonstrated that the spatiotemporal distribution of the plant hormone auxin controls both organogenesis and the establishment of inhibitory fields. We will discuss recent advances showing that auxin likely acts through a combination of biochemical and mechanical regulatory mechanisms that control not only the pattern of organogenesis in the meristem but also postmeristematic growth, to shape the shoot. WIREs Dev Biol 2016, 5:460-473. doi: 10.1002/wdev.231 For further resources related to this article, please visit the WIREs website.
منابع مشابه
Auxin and self-organization at the shoot apical meristem.
Plants continuously generate new tissues and organs throughout their life cycle, due to the activity of populations of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM) generates all the aboveground organs of the plant, including leaves and flowers, and plays a key role in plant survival and reproduction. Organ production at the SAM occurs following pre...
متن کاملArabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy.
Maintenance of indeterminacy is fundamental to the generation of plant architecture and a central component of the plant life strategy. Indeterminacy in plants is a characteristic of shoot and root meristems, which must balance maintenance of indeterminacy with organogenesis. The Petunia hybrida HAIRY MERISTEM (HAM) gene, a member of the GRAS family of transcriptional regulators, promotes shoot...
متن کاملA stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis
Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis aris...
متن کاملRegulation of phyllotaxis.
Plant architecture is characterized by a high degree of regularity. Leaves, flowers and floral organs are arranged in regular patterns, a phenomenon referred to as phyllotaxis. Regular phyllotaxis is found in virtually all higher plants, from mosses, over ferns, to gymnosperms and angiosperms. Due to its remarkable precision, its beauty and its accessibility, phyllotaxis has for centuries been ...
متن کاملAnalyzing perturbations in phyllotaxis of Arabidopsis thaliana
Vascular plants produce new organs at the tip of the stem in a very organized fashion. This patterning process occurs in small groups of stem cells, the so-called shoot apical meristems (SAM), and generates regular patterns called phyllotaxis. The phyllotaxis of the model plant Arabidopsis thaliana follows a Fibonacci spiral, the most frequent phyllotactic pattern found in nature. In this phyll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Wiley interdisciplinary reviews. Developmental biology
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2016